RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. THIRD SEMESTER EXAMINATION, DECEMBER 2019

SECOND YEAR (BATCH 2018-21)

CHEMISTRY (Honours) Paper : III (Gr. B)

Time : 11 am – 1 pm

(Use one Answer Book for Unit-I and another Answer Book for Unit II,III,IV) [Attempt one question from each unit]

[10 marks]

Full Marks: 35

	,	and not potassium phenolate. Explain.	[2]
	b)	The 2,6-deuterated fluorobenzene and 2,6-deuterated bromobenzene derivatives react	
		differently with KNH ₂ in liq. NH ₃ . Write the product(s) in each case with justification.	[2]
	c)	Carry out the following transformations:	$[2 \times 3]$
		i) $NO_2 $ NO_2	
		NO ₂	
		ii) p-Benzoquinone> Dichlorodicyanoquinone	
		iii) N,N-dimethylaniline — Para-N,N-dimethylaminobenzaldehyde	
2.	a)	Explain the relative rate of aromatic nucleophilic and electrophilic substitution of the following halobenzene with proper explanation.	
		Flurobenzene, Chlorobenzene, Bromobenzene and Iodobenzene	[2+2]
	b)	Account for the following observations:	
		i) 1,3-Dichloro-2,5-dinitrobenzene on treatment with methanolic NaOMe produces only 1,3-dichloro-2-methoxy-5-nitrobenzene.	
		ii) Phenol and Salicylic acid give identical product upon bromination.	[2+2]
	c)	Convert: Phenol — Paracetamol	[2]
		<u>Unit-II</u>	[8 marks]
3.	a)	What are the theories behind hard-hard and soft-soft interactions of acids and bases?	[3]
	b)	Why SF ₆ inert towards hydrolysis while TeF ₆ undergoes rapid hydrolysis? Give balanced	
		equation of the hydrolysis reaction.	[3]
	c)	What happens when dimethyl glyoxime is added to Ni^{+2} (aq) in ammonical medium? Draw	
		the structure of the compound formed showing all the bonds.	[2]
4.	a)	Comment on the change in acidity by adding (i) BiN in liquid NH_3 (ii) $CuSO_4$ in aqueous solution of $(NH_4)_2SO_4$.	[2]
	b)	Whether different formulation for H_3PO_3 and H_3BO_3 are necessary? Justify your answer.	[2]
	c)	Explain your choice of acid-base indicator from the given data for the acid base	
		neutralisation of a 10 ml aqueous solution of 0.05N HCl with 0.025N NH_3 (aq.). [Given	

Date : 13/12/2019

1.

a)


pKa for NH_4^+ = 9.2; pH (transition) for (i) Methyl yellow: 2.9-4.0 (ii) Methyl red: 4.4-6.2 (iii) Phenolphthalein: 8-10] [2]

d) Write IUPAC names of $[Cr(NH_3)_6][Co(NO_2)_6]$ and $[(NH_3)_5Cr(OH)Cr(NH_3)_5]Cl_5$

[2]

[2]

- a) Zimmermann-Reinhardt solution is used in the titration of Fe²⁺ with KMnO₄ solution in HCl medium — Explain. [2]
 - b) "Oxidation of Ag to Ag₂S in damp air in the presence of H₂S is thermodynamically feasible" Justify this statement using the given data.
 [Given: E^o_{Ag⁺/Ag} = 0.80 V; E^o_{o₂/H₂0} = 1.23 V; pK₁ of H₂S = 7.1; pK₂ of H₂S = 15; Solubility
 - of H₂S at ordinary condition is 0.1 mol dm⁻³; K_{sp} of Ag₂S = 10⁻⁴⁹] [3]
 - c) Calculate the pK value for the reaction $HFe(CN)_{6}^{3-}=H^{+}+Fe(CN)_{6}^{3-}$. [Given $E_{Fe(CN)_{6}^{3-}/Fe(CN)_{6}^{4-}}^{0}=.365 \text{ V} \text{ ; } E_{Fe(CN)_{6}^{3-}/HFe(CN)_{6}^{3-}}^{0}=+0.619 \text{ V} \text{].}$ [3]
- 6. a) Construct the Frost diagram from the Latimer diagram:

Show the calculations for evaluation of coordinates of each point of the plot. [3]

b) A solution of $K_3[Fe(CN)_6]$ cannot oxidise iodide to iodine but it can do so in presence of zinc ion – explain.

[Given: standard Reduction Potential values:

$$\left[\text{Fe}(\text{CN})_{6} \right]^{-3} / \left[\text{Fe}(\text{CN})_{6} \right]^{4-} = 0.36 \, \nu; \quad \frac{1}{2} I_{2} / I^{\odot} = 0.54 \, \nu \,]$$
[3]

c) From Li to Na, the ionisation energy value decreases but still Li is a strong reducing agent than Na. Justify or contradict.

7.	a)	Compare the large difference in dipole moment value between HF (1.91 debye) and HI molecule (0.42 debye) in the light of M.O. theory.	[4]	
	b)	In $[Fe(CN)_6]^{4-}$ structure, the Fe(II) is bonded through the C-end of CN ⁻ ion. Justify.	[2]	
	c)	What are intrinsic and extrinsic semiconductors? Indicate the type of semiconduction (n or		
		p) expected in the followings: (i) As doped Ge (ii) B doped Si.	[3]	
8.	a)	What is 'Walsh diagram'. Based on this diagram, give molecular orbital configuration of		
		$H_2O.$	[3]	
	b)	Ionization energy of O_2 is smaller than atomic oxygen while that of N_2 is greater than		
		atomic nitrogen. Explain using molecular orbital energy level diagram.	[3]	
	c)	CuSO ₄ , 5H ₂ O loses four water molecules at relatively lower temperature but the fifth water		
		molecule eliminates with decomposition of the compound. Explain the fact using the		
		concept of hydrogen bonding.	[3]	
×				